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Abstract The history of the use of chiral descriptors in Quantitative structure–activ-
ity relationships (QSAR) studies is described, with a particular emphasis on several
series of novel chirality descriptors that have been introduced in this field. Specifi-
cally, chiral topological indices that circumvent the inability of conventional (chiral
insensitive) topological molecular descriptors are reviewed. These modified descrip-
tors were applied to several well-know data sets in order to validate each one of
them. Particularly, Cramer’s steroid data set has become a benchmark for the assess-
ment of novel QSAR methods. This data set has been used by several researches
using 3D-QSAR approaches such as Comparative Molecular Field Analysis (CoMFA),
Comparative Molecular Similarity Indices Analysis (CoMSIA), Molecular Quantum
Similarity Measures (MQSM), 3D-chiral (2.5) TOMOCOMD-CARDD descriptors,
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Topological Quantum Similarity Indices (TQSI), similarity matrixes, Comparative
Molecular Moment Analysis (CoMMA), E-state, Mapping Property Distributions of
Molecular Surfaces (MAP), EVA and so on. For that reason, it was selected for the
shake of comparability by us. An extensive comparison between all these approaches
was updated. In addition, to evaluate the effectiveness of this novel approach in drug
design we have modelled the angiotensin-converting enzyme inhibitory activity of
perindoprilate’s σ -stereoisomers combinatorial library as well as to codify informa-
tion related to pharmacological property highly dependent on molecular symmetry of
a set of seven pairs of chiral N -alkylated 3-(3-hydroxyphenyl)-piperidines that bind
σ -receptors. The validation of this method was achieved by comparison with previous
reports applied to the same data sets. The non-stochastic and stochastic 3D-chiral (2.5)
bilinear indices appear to provide a very interesting alternative to other more common
3D-QSAR descriptors.

Keywords Non-Stochastic and Stochastic 3D-chiral (2.5) atom-based
TOMOCOMD-CARDD descriptors · 3D-QSAR · Angiotesin-converting enzyme
inhibitors · σ -Receptor antagonists · Binding affinity of steroids

1 Background

Asymmetry of atomic configurations is very important feature in determining the phys-
ical, chemical and biological properties of chemicals substances [1]. In the literature,
the asymmetric atoms are often referred to as chiral atoms and molecules containing
chiral atoms are referred to as chiral molecules. Two molecules with identical chem-
ical formulas but different states of symmetry of only one atom are referred to as
enantiomers, but may also be referred to as enantiomorphs, optical isomers or optical
antipodes [2]. The molecules with identical 2D structural formulas containing more
than one asymmetric atom as referred to as σ -diastereomers [3].

However, if a molecule contains chiral atoms, it can be an achiral molecule, because
it may present a symmetric element such as symmetric centre or plane (i.e. meso-
compounds: tartaric acid). In addition, chirality can be caused by a spatial isomerism
resulting from the lack of free rotation around single or double bonds such as in
derivatives of biphenyl or in allenes, rather than due to chiral atoms [3,4]. Thus, a
necessary and sufficient condition to consider a compound as chiral is the absence
of an element of symmetry which avoids chirality. That is to say, if there is not
an inverse axe (Sn) of symmetry (including the plane and centre as self-containing
cases of Sn) we can affirm that we are in the presence of a chiral molecule (hav-
ing or not chiral atoms) [3,5]. In the original definition, Kelvin formulated the con-
cept of chirality as an abstract property of geometric objects: “I call any geometrical
figure, or group of points, chiral … if its image in a plane mirror, ideally realized
cannot be brought to coincide with itself” [6,7]. Although enantiomorphs cannot be
placed upon each other (superimposed or overlapped) so that at least parts of them
coincide.

Hence, chirality cannot be equated with asymmetry (i.e., the total absence of sym-
metry) because all molecules present at least one simple axe of symmetry. Any-
how, this element does not preclude chirality. For this reason, in the past the word
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‘dissymmetry’ was often used as a synonym for what we now call chirality. Pasteur
was well aware of the difference between ‘dissymmetry’ and asymmetry, as evidenced
by the French title of his lecture ‘Recherches sur la Dissymmétrie moléculaire des
produits Organiques naturels’ [8]. Unfortunately, this was translated into English as
‘Researches on the Molecular Asymmetry of Natural Organic Products’ [9]. The word
dissymmetry, in the sense of what we now call chirality seems to have been lost to the
English language over time [5].

Most of the physical as well as chemical properties of chiral molecules are similar.
At the same time, it is well know that many biological molecules are chiral and that
the chirality plays an essential role in defining biological activity [1]. Enantiomers of a
given compounds have identical chemical properties with regard to their reaction with
non-chiral reagents, although they will give products with different configurations. In
addition, they may show differences in behaviour (both in reaction rates and in prod-
uct stereochemistry) in their interactions with a chiral reagent. In this sense, many
biochemical process and phenomena are stereospecific. For instance, l- and d-enan-
tiomers of amino acids have different tastes [10,11], enantiomers of some compounds
have different odours [12,13], and many medicinal preparation have physiological
properties different from those of their enantiomers [14–16]. The case of thalido-
mide is an example of a problem that was, at least, complicated by the ignorance of
stereochemical effects [17]. Thus, whenever a drug is to be obtained in a variety of
chemically equivalent forms (such as a racemate); it is both good science and good
sense to explore the potential for in vivo differences between these forms. In this
connection, the regulation of Food & Drug Administration (FDA) requires a detailed
study of both enantiomers [18].

Based on the experience of chemists, we can recognize at least three kinds of chem-
ical properties or biological activities that depend on the symmetry properties of the
molecule, the environment and the apparatus used to measure the property [5,19]:

1. Symmetry independent properties (they have the same absolute value and sign for
both enantiomers and are invariant to both proper and improper operations of sym-
metry, they are known as scalar properties). These properties are generally mea-
sured in an isotropic environment with symmetric apparatus, e.g. boiling points,
density. These properties do not need the use of chiral molecular descriptors to be
predicted.

2. Molecular Symmetry dependent properties measured in isotropic environments with
specific symmetric apparatus (they have the same absolute value but opposite sign
and are in general pseudoscalar properties). Pseudoscalar properties are those,
which remains invariant to proper operations of symmetry (rotations) but changes
sign under an improper operation (reflections). These properties depend in their
absolute magnitude on molecular symmetry and need the use chiral molecular
symmetric descriptors to be predicted, e.g. optical activity.

3. Molecular symmetry dependent properties measured in non-isotropic environments
(they have different absolute value and could have or not opposite mathematical
sign depending on the scale). They could be scalar or pseudoscalar with respect to
the system as a whole (the molecule and the molecular environment). This specific
group of properties need the use of non-symmetric chiral descriptors, e.g. retention
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time of enantiomers in chiral chromatographic or σ -Receptors Antagonists Activ-
ities (see below).

Attempts to give quantitative meaning to molecular chirality can be dated almost
as far back as van’t Hoff’s and LeBel’s proposition to extend the structural formulas
of chemistry into three-dimencional space (3D). In 1890 Guye introduced the first
function designed to correlated a pseudoscalar property, i.e., optical rotation, with the
molecular structure of chiroids-the first example of a chirality function in chemistry
[20]. Chirality, however, is an inherent molecular property that depends only on sym-
metry and that is independent of its physical and chemical manifestations. It should
therefore be possible to quantify chirality, i.e., to construct a chirality measure, without
reference to any experimental data.

In view of the great importance of molecular chirality in chemistry, biochemistry,
pharmacology, etc, much effort has been made to design theoretical methods by which
enantiomeric species could be distinguished [1,2,21–29]. Nevertheless, very few of
these descriptors have been reported in the literature to date, although the necessity of
a more serious effort in this direction has been recognized by researchers in the area
[30]. Among the chiral topological indices (CTIs) published in the literature, Estrada
et al. mention in a recent review about topological indices (TIs) [30]. Those derived
by Pyka [31–33], Gutman and Pyka [34] have rationalized some of these indices from
a mathematical point of view. The relationships between these indices and the Wiener
index have been established. Moreover, Schultz et al. [28] modified a series of TIs in
order to introduce information regarding the chirality of stereocenters in the molecules.

Some years ago, Buda and Mislow distinguished between two classes of measures
[35]. In the first class ‘the degree of chirality expresses the extent to which a chiral
object differs from an achiral reference object’. In the second one ‘it expresses the
extent to which two enantiomorphs differ from one another’. These methods yield a
single real value, usually an absolute quantity that is the same for both enantiomorphs.
Recently, Benigni et al. proposed a chirality measure for molecules in a data set [26].
This measure is based on the comparison of the 3D structure for a molecule with all
the others in a data set, in terms of electrostatic potential and shape indices. Moreau
described a quantitative measure of the chirality of the environment of each atom
[36]. However, applications of quantitative measures of chirality to the prediction of
experimental observables have been quite limited.

A different idea was to incorporate R/S labels into conventional topological indices
[28]. Derived chirality descriptors were correlated with biological activity by Julián-
Ortiz et al. [25], Golbraikh et al. [1] and more recently by Díaz et al. [19]. One of the
first approaches to in this field was introduced by de Julián-Ortiz et al. [25] in a study
of the pharmacological activity of different pairs of enantiomers on the σ -receptor.
Fortunately, the so-called CTIs are inexpensive in terms of computation time in com-
parison to grid dependent methods like CoMFA [37]. In any case, when chirality is
considered many 3D-TIs become ‘hard to interpret’ in physical terms. For example,
Golbraikh, Bonchev, and Tropsha’s work generated even complex numbers that are
incompatible with statistical software [1].

In addition to CTIs, the characterization of symmetry, and specifically chiral struc-
tural features in computer-aided drug discovery (CADD), has become possible only
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since the development of 3D-QSAR methods. Among these methods, special mention
must be made of the use of CoMFA [37]. Evidently; the chirality in CoMFA is taken
into account by default, since 3D field values of chiral isomers are different. Despite
its wide popularity, CoMFA is not always applicable, especially in situation where
compounds under investigation are highly flexible. Even almost these difficulties are
solved by Grid (a CoMFA like last generation method) several drawbacks still remain
when large data most be processed [38].

In recent times, a novel scheme to the rational -in silico- molecular design and to
QSAR/QSPR has been introduced by our research group TOMOCOMD (acronym of
TOpological MOlecular COMputer Design). It calculates several new families of 2D,
3D-Chiral (2.5) and 3D (geometric and topographic) non-stochastic and stochastic
atom- and bond-based molecular descriptors based on algebraic theory and discrete
mathematic. They are denominate quadratic, linear and bilinear indices and have been
defined in analogy to the quadratic, linear and bilinear mathematical maps [39–44].
These approaches describe changes in the electron distribution with time throughout
the molecular backbone and they have been successfully employed in the prediction of
several physical, physicochemical, chemical biological and pharmacokinetical prop-
erties of organic compounds [45–61]. Applications included studies related to nucleic
acid-drug interactions [62,63] and related with structural characterization of proteins
[64,65]. Besides, these indices have been extended to considering three-dimensional
features of small/medium-sized molecules based on the trigonometric 3D-chirality
correction factor approach [66–68]. In recent works, we had obtained very promis-
ing results when stochastic and non-stochastic 3D-chiral (2.5) quadratic, linear and
bilinear indices were applied to three of the most commonly used chiral data sets
[66–69].

The present report is written with two objectives in mind, gather the definition of
novel families of CTIs, namely 3D-chiral (2.5) TOMOCOMD-CARDD descriptors,
and compare the results achieved with them and those obtained with other methods.

This review is structured as follows: firstly we will introduce the mathematical def-
inition of the atom-based quadratic, linear and bilinear molecular descriptors which is
necessary for understanding the nature of such descriptors and after that we will per-
form an exhaustive comparison between the 3D-chiral (2.5) TOMOCOMD-CARRD
molecular descriptors and other CTIs as well as several 3D-QSAR methods. For
the purpose of comparison, we are going to use three well-know chiral data sets:
(i) angiotensin-converting enzyme inhibitory activity of perindoprilate’s σ -stereoiso-
mers combinatorial library, (ii) σ -receptor antagonist activities of chiral 3-(3-hydroxy-
phenyl)piperidines and (iii) corticosteroid-binding globulin binding affinity of the
Cramer’s steroid data set.

2 Theoretical scaffold about 3D-Chiral (2.5) atom-based
TOMOCOMD-CARDD descriptors

In previous reports, we outline outstanding features concerned with the theory of
2D atom-and bond-based TOMOCOMD-CARDD molecular descriptors (MDs). This
method codifies the molecular structure by means of mathematical quadratic, linear

123



760 J Math Chem (2008) 44:755–786

and bilinear transformations [39–44]. In order to calculate these algebraic maps for a
molecule, the atom-based molecular vector, x̄ (vector representation) and kth “non-sto-
chastic and stochastic graph—theoretic electronic-density matrices”, Mk and Sk cor-
respondingly (matrix representations), are constructed [39,40,45–58,60,62–67,70].
Such atom-adjacency relationships and chemical-information codification are applied
to generate a series of atom-based TOMOCOMD-CARDD MDs, namely atomic, group
and atom-type as well as total quadratic, linear and bilinear indices, to be used in
drug design and chemoinformatic studies.

Therefore the structure of this section will be as follows: (1) a background in atom-
based molecular vector and non-stochastic and stochastic graph—theoretic electronic-
density matrices will be described in the next two subsections, and (2) an outline of
the mathematical definition of quadratic, linear and bilinear maps and a definition of
our procedures will be develop in the third subsection.

2.1 Chemical information and atom-based molecular vector

The atom-based molecular vector (x̄) used to represent small-to-medium size organic
chemicals have been explained elsewhere in some detail [39,40,45–48,50–58,60,
65–67]. The components (x) of x̄ are numeric values, which represent a certain stan-
dard atomic property (atomic label). That is to say, these weights correspond to differ-
ent atom properties for organic molecules. Thus, a molecule having 5, 10, 15, . . . , n
atomic nuclei can be represented by means of vectors, with 5, 10, 15, . . . , n compo-
nents, belonging to the spaces R5, R10, R15, . . . ,Rn , respectively; where n is the
dimension of the real set (Rn). That is to say, x̄ is the n-dimensional property vector
of the atoms (atomic nuclei) in a molecule.

This approach allows us to encode organic molecules such as 3-mercapto-pyridine-
4-carbaldehyde through the molecular vector x̄ = [xN1, xC2, xC3, xC4, xC5, xC6, xC7,

xO8, xS9] (see also Table 2 for molecular structure). This vector belongs to the product
space R9. However, diverse kinds of atomic weights (x) can be used for codifying
information related to each atomic nucleus in the molecule. These atomic labels are
chemically meaningful numbers such as atomic masses, the atomic polarizabilities,
and so on. In the present report, we characterized each atomic nucleus with the follow-
ing parameters (weighting scheme): atomic masses (M), the van der Waals volumes
(V), the atomic polarizabilities (P), atomic electronegativity in Pauling scale (E). The
values of these atomic labels are shown in Table 1 [71–73].

Additionally, if we are interested to codify the chemical information by means of
two different molecular vectors, for instance, x̄ = [x1, . . ., xn] and ȳ = [y1, . . ., yn];
then different combinations of molecular vectors (x̄ �= ȳ) are possible when a weight-
ing scheme is used. For instance, in the present report, we characterized each atomic
nucleus with the following parameters describe above (see Table 1): M, V, P, and
E. From this weighting scheme, six (or twelve if x̄M − ȳV �= x̄V − ȳM) com-
binations (pairs) of molecular vectors (x̄, ȳ; x̄ �= ȳ) can be computed, x̄M − ȳV,
x̄M − ȳP, x̄M − ȳE, x̄V − ȳP, x̄V − ȳE, and x̄P − ȳE. Here, we used the symbols
x̄W − ȳZ, where the subscripts W and Z mean two atomic properties from our weighting
scheme and a minus (−) expresses the combination (pair) of two selected atom-label
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Table 1 Values of the atomic
weights used for
TOMOCOMD-CARDD MDs

a VdW: van der Waals

ID Atomic VdWa Polarizability Pauling
mass Volume (Å3) (Å3) electronegativity

H 1.01 6.709 0.667 2.2
B 10.81 17.875 3.030 2.04
C 12.01 22.449 1.760 2.55
N 14.01 15.599 1.100 3.04
O 16.00 11.494 0.802 3.44
F 19.00 9.203 0.557 3.98
Al 26.98 36.511 6.800 1.61
Si 28.09 31.976 5.380 1.9
P 30.97 26.522 3.630 2.19
S 32.07 24.429 2.900 2.58
Cl 35.45 23.228 2.180 3.16
Fe 55.85 41.052 8.400 1.83
Co 58.93 35.041 7.500 1.88
Ni 58.69 17.157 6.800 1.91
Cu 63.55 11.494 6.100 1.9
Zn 65.39 38.351 7.100 1.65
Br 79.90 31.059 3.050 2.96
Sn 118.71 45.830 7.700 1.96
I 126.90 38.792 5.350 2.66

chemical properties. In order to illustrate this, let us consider the same organic mol-
ecule as in the example above (3-mercapto-pyridine-4-carbaldehyde) and the follow-
ing weighting scheme: M and V (x̄M − ȳV = x̄V − ȳM). The following molecular
vectors, x̄ = [14.01, 12.01, 12.01, 12.01, 12.01, 12.01, 12.01, 16.0, 32.07] and ȳ =
[15.599, 22.449, 22.449, 22.449, 22.449, 22.449, 22.449, 11.494, 24.429] are obta-
ined when we use M and V as chemical weights for codifying each atom in the
example molecule in x̄ and ȳ vectors, respectively.

2.2 Background in non-stochastic and stochastic graph—theoretic
electronic-density matrices

In molecular topology, molecular structure is expressed, generally, by the hydrogen-
suppressed graph. That is, a molecule is represented by a graph. Informally a graph
G is a collection of vertices (points) and edges (lines or bonds) connecting these ver-
tices [74–76]. In more formal terms, a simple graph G is defined as an ordered pair
[V(G), E(G)] which consists of a nonempty set of vertices V(G) and a set E(G) of
unordered pairs of elements of V(G), called edges [74–76]. In this particular case we
are not dealing with a simple graph but with a so-called pseudograph (G). Informally,
a pseudograph is a graph with multiple edges or loops between the same vertices or
the same vertex. Formally: a pseudograph is a set V of vertices along a set E of edges,
and a function f from E to {{u, v}|u, v in V } (The function f shows which pair of
vertices are connected by which edge). An edge is a loop if f (e) = {u} for some
vertex u in V [39,40,77].

In the earlier reports we have introduced new molecular matrices that describe
changes along the time in the electronic distribution throughout the molecular back-
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bone. The n × n kth non-stochastic graph—theoretic electronic-density matrix of the
molecular pseudograph (G), Mk, is a square and symmetric matrix, where n is the
number of atoms (atomic nuclei) in the molecule [39,40,45–48,50–58,60,65–67].
The coefficients kmi j are the elements of the kth power of M(G) and are defined as
follows:

mi j = Pi j if i �= j and ∃ek ∈ E(G) (1)

= Lii if i = j

= 0 otherwise

where E(G) represents the set of edges of G. Pi j is the number of edges (bonds)
between vertices (atomic nuclei) vi and v j , and Lii is the number of loops in vi .

The elements mi j = Pi j of such a matrix represent the number of chemical bonds
between an atomic nucleus i and other j . The matrix Mk provides the numbers of
walks of length k that link every pair of vertices vi and v j . For this reason, each edge
in M1 represents 2 electrons belonging to the covalent bond between atomic nuclei i
and j ; e.g. the inputs of M1 are equal to 1, 2 or 3 when single, double or triple bonds,
correspondingly, appears between vertices vi and v j . On the other hand, molecules
containing aromatic rings with more than one canonical structure are represented by a
pseudograph. It happens for substituted aromatic compounds such as pyridine, naph-
thalene, quinoline, and so on, where the presence of pi (π ) electrons is accounted by
means of loops in each atomic nucleus of the aromatic ring. Conversely, aromatic
rings having only one canonical structure, such as furan, thiophene and pyrrol are
represented by a multigraph. In order to illustrate the calculation of these matrices,
let us consider the same molecule selected in the previous section (3-mercapto-pyri-
dine-4-carbaldehyde). Table 2 depicts the molecular structure of this compound and
its labeled molecular pseudograph. The zero (k = 0), first (k = 1), second (k = 2)
and third (k = 3) powers of the non-stochastic graph—theoretic electronic-density
matrices are also given in this Table.

As can be seen, Mk are graph—theoretic electronic-structure models, like an
“extended Hückel theory (EHT) model”. The M1 matrix considers all valence-bond
electrons (σ - and π -networks) in one step and its power (k = 0, 1, 2, 3. . .) can be con-
sidered as interacting—electron chemical—network models in k step. The complete
model can be seen as an intermediate between the quantitative quantum-mechanical
Schrödinger equation and classical chemical bonding ideas [78].

The present approach is based on a simple model for the intramolecular movement
of all outer-shell electrons. Let us consider a hypothetical situation in which a set of
atoms is free in space at an arbitrary initial time (t0). At this time, the electrons are
distributed around the atomic nuclei. Alternatively, these electrons can be distributed
around cores in discrete intervals of time tk . In this sense, the electron in an arbi-
trary atom i can move (step-by-step) to other atoms at different discrete time periods
tk(k = 0, 1, 2, 3, . . .) throughout the chemical-bonding network.

On the other hand, the kth stochastic graph—theoretic electronic-density matrix of
G, Sk , can be directly obtained from Mk . Here, Sk = [ksi j ], is a square matrix of order
n (n = number of atomic nuclei) and the elements ksi j are defined as follows:
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ksi j =
kmi j

kSUMi
=

kmi j
kδi

(2)

where, kmi j are the elements of the kth power of M and the SUM of the i th row of
Mk are named the k-order vertex degree of atom i , kδi . It should be remarked that the
matrix Sk in Eq. 2 has the property that the sum of the elements in each row is 1. An n×n
matrix with nonnegative entries having this property is called a “stochastic matrix”
[70]. The kth si j elements are the transition probabilities with the electrons moving
from atom i to j in the discrete time periods tk . It should be also pointed out that kth
element si j takes into consideration the molecular topology in k step throughout the
chemical-bonding (σ - and π -) network. In this sense, the 2si j values can distinguish
between hybrid states of atoms in bonds. For instance, the self-return probability of
second order (2si i ) [i.e., the probability with which electron returns to the original
atom at t2], varies regularly according to the different hybrid states of atom i in the
molecule, e.g. an electron will have a higher probability of returning to the sp C atom
than to the sp2 (or sp3) C atom in t2[p(Csp) > p(C2

sp) > p(C2
sparom) > p(C3

sp)] (see
Table 2 for more details). This is a logical result if the electronegativity scale of these
hybrid states is taken into account.

2.3 Calculation of atom-based 2D TOMOCOMD-CARDD MDs

2.3.1 Quadratic and bilinear indices for atoms, group, atom-types and the whole
molecule

If a molecule consists of n atoms (vector of Rn), then the kth total (whole) quadratic
and bilinear indices are calculated as quadratic and bilinear forms on Rn , respectively,
in canonical basis set. Specifically, the kth non-stochastic and stochastic atom-based
quadratic [bilinear] indices for a molecule, qk(x̄)[bk(x̄, ȳ)] and sqk(x̄)[sbk(x̄, ȳ)], are
computed from these kth non-stochastic and stochastic graph—theoretic electronic-
density matrices, Mk and Sk as shown in Eqs. 3 [3a] and 4 [4a], correspondingly
[39,40,45–58,60,62–67,70]:

qk(x̄) =
n∑

i=1

n∑

j=1

kmi j xi x j = [X]t Mk[X] (3)

bk(x̄, ȳ) =
n∑

i=1

n∑

j=1

kmi j xi y j = [X]t Mk[Y] (3a)

sqk(x̄) =
n∑

i=1

n∑

j=1

ksi j xi x j = [X]t Sk[X] (4)

sbk(x̄, ȳ) =
n∑

i=1

n∑

j=1

ksi j xi y j = [X]t Sk[Y] (4a)
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where, n is the number of atoms (atomic nuclei) of the molecule, and x1, . . . , xn and
y1, . . ., yn are the coordinates or components of the molecular vectors x̄ and ȳ in a sys-
tem of canonical (‘natural’) basis vectors of �n . In this basis system, the coordinates
[(x1, . . ., xn) and (y1, . . ., yn)] of any molecular vectors (x̄ and ȳ) coincide with the
components of those vectors [(x1, . . ., xn) and (y1, . . ., yn)] [79,80]. For that reason,
those coordinates can be considered as weights (atomic labels) of the vertices of the
molecular pseudograph. The coefficients kmi j and ksi j are the elements of the kth

power of the matrix M(G) and S(G), correspondingly, of the molecular pseudograph.
The defined Eqs. 3 [3a] and 4 [4a] for qk(x̄)[bk(x̄, ȳ)] and sqk(x̄)[sbk(x̄, ȳ)] may

also be written as the single matrix equation, where [X] ([Y]) is a column vector (an
nx1 matrix) of the coordinates of x̄ (ȳ) in the canonical basis of �n , and [X]t (a 1xn
matrix) is the transpose of [X]. Here, Mk and Sk denote the matrices of quadratic maps
with respect to the natural basis set.

It should be remarked that non-stochastic and stochastic bilinear indices are sym-
metric and non-symmetric bilinear forms, respectively. Therefore, if in the following
weighting scheme, M and V are used as atomic weights to compute theses MDs, two
different sets of stochastic bilinear indices, M−VsbH

k (x,y) and V−MsbH
k (x, y) [because

x̄M − ȳV �= x̄V − ȳM] can be obtained and only one group of non-stochastic bilinear
indices (M−VsbH

k (x, y) =V−Ms bH
k (x, y) because in this case x̄M − ȳV = x̄V − ȳM)

can be calculated.
In the last decade, Randić [81] proposed a list of desirable attributes for a MD.

Therefore, this list can be considered as a methodological guide for the develop-
ment of new TIs. One of the most important criteria is the possibility of defining
the descriptors locally. This attribute refers to the fact that the index could be cal-
culated for the molecule as a whole but also over certain fragments of the structure
itself.

Sometimes, the properties of a group of molecules are related more to a certain zone
or fragment than to the molecule as a whole. Thereinafter, the global definition never
satisfies the structural requirements needed to obtain a good correlation in QSAR and
QSPR studies. The local indices can be used in certain problems such as:

• Research on drugs, toxics or generally any organic molecules with a common
skeleton, which is responsible for the activity or property under study.

• Study on the reactivity of specific sites of a series of molecules, which can undergo
a chemical reaction or enzymatic metabolism.

• In the study of molecular properties such as spectroscopic measurements, which
are obtained experimentally in a local way.

• In any general case where it is necessary to study not the molecule as a whole,
but rather some local properties of certain fragments, then the definition of local
descriptors could be necessary.

Therefore, in addition to total quadratic and bilinear indices computed for the whole
molecule, local-fragment (atomic, group or atom-type) formalism can be developed.
These descriptors are termed local non-stochastic and stochastic quadratic [bilinear]
indices, qkL(x̄)[bkL(x̄, ȳ)] and sqkL(x̄) [sbkL(x̄, ȳ)], respectively. The definition of
these descriptors is as follows:
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qkL(x̄) =
n∑

i=1

n∑

j=1

kmi j L xi x j = [X]t Mk
L [X] (5)

bkL(x̄, ȳ) =
n∑

i=1

n∑

j=1

kmi j L xi y j = [X]t Mk
L [Y] (5a)

sqkL(x̄) =
n∑

i=1

n∑

j=1

ksi j L xi x j = [X]t Sk
L [X] (6)

sbkL(x̄, ȳ) =
n∑

i=1

n∑

j=1

ksi j L xi y j = [X]t Sk
L [Y] (6a)

where kmi j L [ksi j L ] is the kth element of the row “i” and column “ j” of the local matrix
Mk

L[Sk
L]. This matrix is extracted from the Mk[Sk] matrix and contains information

referred to the pairs of vertices (atomic nuclei) of the specific molecular fragments
and also of the molecular environment in k step. The matrix Mk

L[Sk
L] with elements

kmi j L [ksi j L ] is defined as follows:

kmi j L [ksi j L ] = kmi j [ksi j L ]if both vi and v j are atomic nuclei contained within

the molecular fragment

= ½ kmi j [ksi j L ] if vi or v j is an atomic nucleus contained within

the molecular fragment but not both

= 0 otherwise (7)

These local analogues can also be expressed in matrix form for each molecular vec-
tor x̄ ∈ �n and ȳ ∈ �n . It should be remarked that the above scheme follows the
spirit of a Mulliken population analysis [82]. It should be point out also that for every
partitioning of a molecule into Z molecular fragments there will be Z local molecular
fragment matrices. In this case, if a molecule is partitioned into Z molecular fragments,
the matrix Mk[Sk] can be partitioned into Z local matrices Mk

L[Sk
L], L = 1, . . . Z , and

the kth power of matrix M [S] is exactly the sum of the kth power of the local Z
matrices:

Mk =
Z∑

L=1

Mk
L (8)

Sk =
Z∑

L=1

Sk
L (9)
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or in the same way as Mk = [kmi j ] or Sk = [ksi j ], where,

kmi j =
Z∑

L=1

kmi j L (10)

ksi j =
Z∑

L=1

ksi j L (11)

and consequently, the total non-stochastic and stochastic quadratic [bilinear] indices
are the sum of the non-stochastic and stochastic quadratic [bilinear] indices, respec-
tively, of the Z molecular fragments:

qk(x̄) =
Z∑

L=1

qkL(x̄) (12)

bk(x̄, ȳ) =
Z∑

L=1

bkL(x̄, ȳ) (12a)

sqk(x̄) =
Z∑

L=1

sqkL(x̄) (13)

sbk(x̄, ȳ) =
Z∑

L=1

sbkL(x̄, ȳ) (13a)

Atomic, atom-type and group quadratic [bilinear] fingerprints are specific cases of
local quadratic [bilinear] indices. First, notice that atomic quadratic [bilinear] indi-
ces, qk(x̄i ) and sqk(x̄i ) [bkL(x̄i , ȳi ) and sbkL(x̄i , ȳi )], can be computed for each
atom i in the molecule and contain electronic and topological structural informa-
tion from all other atoms within the structure. The atom-level quadratic and bilin-
ear indices values for the common scaffold atoms can be directly used as vari-
ables in seeking a QSPR/QSAR model as long as these atoms are numbered in the
same way in all molecules in the database. As it can be seen, the kth total qua-
dratic and bilinear indices (both non-stochastic and stochastic) are calculated by
summing the atomic quadratic and bilinear indices, respectively, of all atoms in the
molecule.

In addition, the atom-type quadratic and bilinear indices can also be calculated
as local MDs. In the same way as atom-type E-state values [83], for all data sets
(including those with a common skeletal core as well as those with very diverse
structures), these novel local MDs provide much useful information. That is, this
approach provides the basis for application to a wider range of problems to which
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the atomic quadratic indices formalism is applicable without the need for superpo-
sition. For this reason the present method represents a significant advantage over
traditional QSAR methods. The atom-type quadratic and bilinear descriptors are cal-
culated by adding the kth atomic quadratic and bilinear indices, correspondingly, for
all atoms of the same type in the molecule. This atom type index lends itself to use
in a group additive-type scheme in which an index appears for each atom type in the
molecule.

In the atom-type quadratic and bilinear indices formalism, each atom in the mol-
ecule is classified into an atom type (fragment), such as –F, –OH, =O, –CH3, and
so on [83]. That is to say, each atom in the molecule is categorized according to a
valence-state classification scheme including the number of attached H-atoms [83].
The atom-type descriptors combine three important aspects of structural information:
(1) Collective electron and topologic accessibility to the atoms of the same type (for
each structural feature: atom or hybrid group such as –Cl, =O, –CH2–, etc.), (2) pres-
ence/absence of the atom type (structural features), and (3) count of the atoms in the
atom-type sets.

Finally, these local MDs can be calculated by a chemical (or functional) group in
the molecule, such as heteroatoms (O, N and S in all valence states and including the
number of attached H-atoms), hydrogen bonding (Hbonding) to heteroatoms (O, N
and S in all valence states), halogen atoms (F, Cl, Br and I), all aliphatic carbon chains
(several atom types), all aromatic atoms (aromatic rings), and so on. The group-level
quadratic [bilinear] indices are the sum of the individual atom-level quadratic [bilinear]
indices for a particular group of atoms. For all data set structures, the kth group-based
quadratic and bilinear indices provide important information for QSAR/QSPR studies.

2.3.2 Linear indices for atoms, group, atom-types and the whole molecule

If a molecule consists of n atoms (vector of �n), then the kth atomic linear indices for
atom i in a molecule, are calculated as linear maps on �n (endomorphism on �n) in
canonical basis set. Specifically, the kth non-stochastic and stochastic atomic linear
indices, f k(x̄i ) and sf k(x̄i ), are computed from these kth non-stochastic and stochastic
graph—theoretic electronic-density matrices, Mk and Sk, as shown in Eqs. 3 and 4,
respectively:

fk(x̄i ) =
n∑

j=1

kmi j x j = [X′]k = Mk[X] (14)

s fk(x̄i ) =
n∑

j=1

ksi j x j = [XS′]k = Sk[X] (15)

where n is the number of atoms of the molecule and x j are the coordinates of the atom-
based molecular vector (x̄) in the so-called canonical (‘natural’) basis. The coefficients
kmi j and ksi j are the elements of the kth power of the matrix M(G) and S(G), cor-
respondingly, of the molecular pseudograph. The defining equation (14) and (15) for

123



770 J Math Chem (2008) 44:755–786

f k(x̄i ) and sf k(x̄i ), respectively, may be also written as the single matrix equation,
where [X] is a column vector (an n ×1 matrix) of the coordinates of x̄ in the canonical
basis of �n . Here, Mk and Sk denote the matrices of linear maps with respect to the
natural basis set.

It should be remarked that both atom linear indices are defined as a linear trans-
formation f k(x̄i ) on molecular vector space �n . This map is a correspondence that
assigns a vector f (x) to every vector x̄ in �n in such a way that:

f (λ1 x̄1 + λ2 x̄2) = λ1 f (x̄1) + λ2 f (x̄2) (16)

for any scalar λ1, λ2 and any vector x̄1, x̄2 in �n .
Total (whole-molecule) atom-based non-stochastic and stochastic linear indices,

f k(x̄) and sf k(x̄), are calculated from local (atomic) linear indices as shown in Eqs. 17
and 18, correspondingly:

fk(x̄) =
n∑

i=1

fk(x̄i ) = [u]t[X′]k = [u]tMk[X] (17)

sf k(x̄) =
n∑

i=1

s fk(x̄i ) = [u]t[XS′]k = [u]tSk[X] (18)

where n is the number of atoms, and f k(x̄i ) and sf k(x̄i ) are the non-stochastic and
stochastic atomic linear indices obtained by Eqs. 14 and 15, respectively. Then, both
total linear form, f k(x̄) and sf k(x̄), can also be written in matrix form for each molec-
ular vector x̄ ∈ �n , where [u]t is an n-dimensional unitary row vector. As it can be
seen, the kth total linear indices (both non-stochastic and stochastic) are calculated by
summing the local (atomic) linear indices of all atoms in the molecule.

Finally, in addition to total and atomic linear indices computed for each atom in the
molecule, a local-fragment formalism can also be developed. In this sense, group and
atom-type linear fingerprints are specific cases of local atom-based linear indices.

The atom-type linear descriptors (as well as quadratic and bilinear indices) are
calculated by adding the kth atomic linear indices for all atoms of the same type in
the molecule. The group-level linear indices are the sum of the individual atom-level
linear indices for a particular group of atoms. Consequently, this atom- and group-type
index lends itself to use in a group additive-type scheme in which an index appears
for each atom type in the molecule. Here, if a molecule is partitioned into Z molecular
fragments, the total non-stochastic [or stochastic] linear indices can be partitioned into
Z local non-stochastic [or stochastic] linear indices fkL(x̄) [or s fkL(x̄)], L = 1, . . ., Z.
That is to say, the total (both non-stochastic and stochastic) linear indices of order k
can be expressed as the sum of the local linear indices of the Z fragments of the same
order:

fk(x̄) =
Z∑

L=1

fkL(x̄) (19)
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s fk(x̄) =
Z∑

L=1

s fkL(x̄) (20)

2.4 3D-chiral extended (2.5) non-stochastic and stochastic atom-based
TOMOCOMD-CARDD MDs for atoms, atom-types and group as well
as for whole molecule

The total and local, non-stochastic and stochastic quadratic, bilinear, and linear indi-
ces, as defined above, can not codify any information about 3D molecular structure.
In order to solve this problem we introduced a trigonometric 3D-chirality correction
factor in molecular vector x̄ [66–69]. In these sense, a chirality molecular vector is
obtained (∗ x̄), where the components of x̄ (for instance, Pauling electronegativity (xA)
of the atom A) are substituted by the following term [xA + sin((ωA + 4�)π/2)].

The trigonometric 3D-chirality correction factor use a dummy variable, ωA and an
integer parameter, � [66–69]:

ωA = 1 and � is an odd number when A has R (rectus), E (entgegen), or a (axial)

notation according to Cahn-Ingold-Prelog rules

= 0 and � is an even number, if A does not have 3D specific enviroment

= −1 and � is an odd number when A has S (sinister), Z (zusammen),

or e (ecuatorial) notation according to Cahn-Ingold-Prelog rules (21)

Thus, this 3D-chirality factor sin((ωA + 4�)π/2) takes different values in order to
codify specific stereochemical information such as chirality, Z/E isomerism, and so
on. This factor therefore takes values in the following order 1 > 0 > −1 for atoms
that have specific 3D environments. The chemical idea here is not that the attraction of
electrons by an atom depends on their chirality, due to experience shows that chirality
does not change the electronegativities of atoms in the molecule in an isotropic envi-
ronment in an observable way [84]. This correction has principally a mathematical
means and must not be source of any misunderstanding.

A severe limitation of the GBT [1] approach is the existence of different chirality
corrections and we had great difficulty in selecting one of these. In this connection,
the present trigonometric 3D-chiral correction factor is invariant with respect to the
selection of other chirality scales for all kinds of such chiral TIs (GBT-like ones).
Table 3 depicts the values of the trigonometric 3D-Chirality correction factor for all
allowed values of ωA and � (GBT-like chirality scale and other alternative chirality
scales). In this Table is clearly shown that the trigonometric 3D-chirality factor is
invariant with respect to the selection of all possible real scales. That is to say, the
factor gets ever the values 1, 0 and −1 for R, non-chiral and S atoms. As outlined
above the demonstration of invariance for this factor with respect to other 3D features
such as a/e substitutions and Z/E or π -isomer is straightforward to realize by homol-
ogy. Henceforth, we do not need to answer the question regarding the best value for
chirality correction, at lest for linear scales [1,19,25].
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Table 3 Values of trigonometric 3D-chirality correction factor [sin((ωA + 4�)π/2)] within the allowed
domain

ωA �

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

ωR = 1 1 1 1 1 1 1 1 1
ωnon-chiral = 0 0 0 0 0 0 0 0
ωS=−1 −1 −1 −1 −1 −1 −1 −1 −1

A very interesting point is that the present 3D-chiral (2.5) descriptor reduces to sim-
ples (2D) non-stochastic and stochastic quadratic, bilinear and linear indices ones for
molecules without specific 3D characteristics because sin(0 + 4�)π/2 = 0, being �

zero or any even number. That is, when all the atoms in the molecule are not chiral, the
TOMOCOMD-CARDD MDs or any GBT-like chiral TI do not change upon the intro-
duction of this factor. This means that, for example ∗ x̄ = x̄ and thus, ∗qk(x̄) = qk(x̄),
∗bk(x̄) = bk(x̄) and ∗f k(x̄) = f k(x̄).

3 Computational strategies

All computations were carried out on a PC Pentium-4 3.2 GHz. The TOMOCOMD
program for Windows package developed in our laboratory was used for computing
the molecular descriptors for the dataset of compounds. This software is an interac-
tive program for molecular design and bioinformatic research [85]. It is composed
of four subprograms; each one of them allows both drawing the structures (drawing
mode) and calculating molecular 2D/3D descriptors (calculation mode). The mod-
ules are named CARDD (Computed-Aided ‘Rational’ Drug Design), CAMPS (Com-
puted-Aided Modeling in Protein Science), CANAR (Computed-Aided Nucleic Acid
Research) and CABPD (Computed-Aided Bio-Polymers Docking). In the present
report, we outline salient features concerned with only one of these subprograms,
CARDD and with the calculation of non-stochastic and stochastic 2D atom-based
bilinear indices.

The main steps for the application of the present method in QSAR/QSPR and drug
design can be summarized briefly in the following algorithm: (1) Draw the molecular
structure for each molecule in the data set, using the software drawing mode. This
procedure is performed by a selection of the active atomic symbol belonging to the
different groups in the periodic table of the elements; (2) Use appropriate weights in
order to differentiate the atoms in the molecule. The weights used in this work are those
previously proposed for the calculation of the DRAGON descriptors [72,73,86], i.e.,
atomic mass (M), atomic polarizability (P), van der Waals atomic volume (V), plus
the atomic electronegativity in Pauling scale (E). The values of these atomic labels
are shown in Table 1 [71–73,86]; (3) Compute the total and local (atomic, group
and atom-type) non-stochastic and stochastic bilinear indices. It can be carried out
in the software calculation mode, where one can select the atomic properties and the
descriptor family before calculating the molecular indices. This software generates
a table in which the rows correspond to the compounds, and columns correspond to
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the atom-based (both total and local) bilinear maps or other MDs family implemented
in this program; (4) Find a QSPR/QSAR equation by using several multivariate ana-
lytical techniques, such as multilinear regression analysis (MRA), neural networks,
linear discrimination analysis, and so on. Therefore, one can find a quantitative relation
between a property P and the bilinear fingerprints having, for instance, the following
appearance,

P = a0b0(x̄, ȳ) + a1b1(x̄, ȳ) + a2b2(x̄, ȳ) + · · · + akbk(x̄, ȳ) + c (22)

where P is the measured property, bk(x̄, ȳ) are the kth non-stochastic total bilin-
ear indices, and the ak’s and c are the coefficients obtained by the MRA; (5) Test
the robustness and predictive power of the QSPR/QSAR equation by using internal
(cross-validation) and external validation techniques.

4 Qsar applications to central chirality codification: Comparison
with other theoretical approaches

With the objective of assess the efficacy of 3D-chiral (2.5) TOMOCOMD-CARDD
descriptors, we have tested their ability to predict pharmacological properties in sev-
eral groups of compounds with a known stereochemical influence. We select these data
sets because they have been used repeatedly in several QSAR studies in recent years.
Now we are going to discuss the use of the 3D-chiral (2.5) TOMOCOMD-CARDD
descriptors in each one of these well-known series of compounds and a comparison
with other approaches previously reported will be also developed.

4.1 Classification of the ACE inhibitory activity of 32 perindopirilate’s
σ -stereoisomers

A recently introduced data set of 32 perindoprilate stereoisomers, an angiotensin-
converting enzyme (ACE) inhibitors [87], was used to test the applicability of our
method. This data set was previously used by Diaz et al. [19,87] and furthermore
by us in some works [66,67]. ACE acts in plasma and blood vessels, removing the
C-terminal dipeptide of undecapeptide Angiotesin I to produce the potent blood vessel
constricting octapeptide Angiotesin II. In addition, ACE inactivates the hypotensive
nonapeptide Bradykinin. For these reasons, ACE is the biological target of many
important antihypertensive drugs called ACE inhibitors (ACEIs) [87]. Is this study,
active is taken to a mean a compound that has an IC50 value no higher than 110 nm.

In the reviewed works a Linear Discrimination Analysis (LDA) was used to develop
a simple linear QSAR model to fit the classification functions in order to discriminate
between two degrees of ACE inhibitory activity. To codify the biological activity a
dummy variable (ACEiactv) was used. This variable indicates the presence of either a
very active compound (ACEiactv = 1) or a non-active compound (ACEiactv = −1).
In Table 4 we give the basic structure of perindoprilate stereoisomer and their classi-
fication in the training and prediction set when different approaches were used.
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Table 5 Classification of 32 perindopirilate’s stereoisomers and the statistical parameters of the QSAR
models obtained using different MDs

Index n λ D2 Accuracy Accuracy F
(training) (%) (training) (%)

Stochastic bilinear
indices [69]

2 0.393 7.30 95.65 100.00 15.42

Non-stochastic
bilinear indices
[69]

2 0.398 7.164 95.65 100.00 15.13

Stochastic linear
indices [66]

2 0.399 7.789 95.65 100.00 15.02

Non-stochastic
quadratic
indices [67]

2 0.42 7.12 95.65 100.00 13.73

Non-stochastic
linear indices
[66]

2 0.398 7.82 100.00 88.88 15.08

MARCH-INSIDE
molecular
descriptors [19]

3 0.38 8.43 91.30 88.88 10.30

N : number of used compounds. n: number of parameter in the obtained model

The statistical analyses were carried out with the STATISTICA software [88]. The
quality of the reported discriminant functions was determined examining the statistics
parameter of multivariable comparison (Wilk’s λ statistic, the square of Mahalanobis
distance, Fisher ratio F, the corresponding p-level [p(F)] as well as the percentage of
good classification, the proportion between the cases and variables in the equation)
and the use of an external validation set. Table 5 show the classification of 32 perindo-
pirilate’s stereoisomers and the statistical parameters of the QSAR models obtained
using different molecular descriptors (MDs).

As can be seen, all the obtained models for the prediction between the two degrees
of ACE inhibitory activity involved two MDs and one case (when MARCH-INSIDE
MDs were used) needed three parameters. The accuracy values were over 91% in all
the models for the training set and in one of them (QSAR model obtained with non-sto-
chastic atom-based linear indices) it reaches 100%. An accuracy of the 95.65% (22/23)
was obtained in four of the six models for the training set. In addition, the values of
the Wilk’s λ statistic were good for the six models. The Wilks’ λ statistical helpful
to value the total discrimination and can take values between zero (perfect discrimi-
nation) and one (no discrimination), the best values (0.38 and 0.393) were obtained
when MARCH-INSIDE MDs and atom-based stochastic bilinear indices were used
respectively. Notice that, the second one use one variable less than the other model
previously mentioned.

Validation of the models is the other major bottleneck in QSAR [89,90]. One of
the most popular validation criteria is internal cross-validation (leave-one-out, leave-
n-out, leave-25%(group)-out and so on). Nevertheless, there can exist a lack of cor-
relation between the good results in internal cross-validation and the high predictive
ability of QSAR models [89,90]. Thus, the good high behavior in internal cross-val-

123



J Math Chem (2008) 44:755–786 777

idation appears to be the necessary but not the sufficient condition for the models to
have a high predictive power. In this sense, Golbraikh and Tropsha emphasize that
the predictive ability of a QSAR model can only be estimated using an external test
set (external validation) of compounds that was not used for building the model and
formulated a set of criteria for evaluation of predictive ability of QSAR model [90]. In
this sense, four models had an accuracy of the 100% for the test set. We can say that,
the best of all is the model obtained with 3D-chiral (2.5) stochastic bilinear indices
because it has a high value of accuracy for both, training (95.65%) and test (100%)
set. This model involves only two parameters and has one of the best values of the
Wilks’ λ statistic. In Table 5 this comparison can be made easier.

4.2 Modelling σ -receptor antagonist activities of 3-(3-hydroxyphenyl)piperidines

After that, a short data set of seven pairs of chiral N -alkylated 3-(3-hydroxyphenyl)
piperidines that bind to σ -receptors, are also selected as illustrative example of the
3D-chiral (2.5) TOMOCOMD-CARDD descriptors application. This data set was intro-
duced in QSAR studies by de Julian-Ortiz et al. [25] in 1998, and after that has been
repeatedly used by some authors [19,66–68] in recent years, to validate new CTIs.
The σ -receptors mediate severe side effects induced by various dopamine antagonists
[25].

3D-chiral (2.5) TOMOCOMD-CARDD descriptors are non-symmetric and reduce
to classical descriptors when symmetry is not codified. Besides, Gónzalez-Díaz et al.
conclude that σ receptor antagonist activities is not a pseudoscalar property [19] and
we can expect at least a good correlation with 3D-chiral (2.5) TOMOCOMD-CARDD
descriptors. Table 6 show the experimental and predicted values of Log IC50 for these
compounds, previously reported in the reviewed papers [19,25].

A linear multiple regression (LMR) analysis was used to obtain quantitative models
that related the CTIs and σ -receptors antagonist activities [19,25,66–68]. The search
for the best model can be processed in terms of the highest regression coefficient (R)
or F-test equations (Fisher-ratio’s p-level [p(F)]), and the lowest standard deviation
equations (s). The quality of the models was determined examining the regression’s
statistic parameters and of the cross-validation procedures [90,91]. In this sense, the
quality of models was determined by examining the determination coefficients (also
know as squared regression coefficient; R2) and the leave-one-out (LOO) press statis-
tics (q2, scv) [89,90]. The results of these works are summarized in the Table 7, where
a comparison between all these approaches can be easily carried out.

All the obtained QSAR models use two variables except one of them who involve
three descriptors. The best results for modeling σ -receptor antagonist activities were
obtained with the non-stochastic and stochastic atom-based bilinear indices. These
models explain more than the 95 % and 96% of the experimental values of log IC50,
respectively. They also showed the lowest values of standard deviation 0.238 and
0.219, correspondingly. These results are better than others reported previously in the
literature, for the same data set, using different CTIs.

Predictability and stability (robustness) of the obtained models to data variation
was carried out here by means of LOO cross-validation. In this sense, the models with
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Table 6 Results of multivariate regression analysis of the log IC50 of a group of n-alkylated 3-(3-hidroxy-
phenyl)piperidines for the σ -receptor

N
OHR

*

Compound
(Alkyl group)a

Log IC50(σ -receptor)

Obs.b Cal.c Res.d Cal.e Res.d Cal.f Res.d Cal.g Res.d Cal.h Res.d

(R)-3-HPP
H −0.66 −0.43 −0.23 −0.54 −0.12 −0.48 −0.18 −0.50 −0.16 −0.71 0.05
CH3 0.43 0.12 0.31 0.13 0.30 0.28 0.15 0.06 0.37 0.35 0.08
C2H5 0.95 0.72 0.23 0.72 0.23 0.70 0.25 0.67 0.28 0.75 0.20
n−C3H7 1.52 1.36 0.16 1.32 0.20 1.45 0.07 1.34 0.18 1.55 −0.03
i-C3H7 0.61 1.27 −0.66 1.30 −0.69 0.84 −0.23 1.10 −0.49 1.11 −0.50
n-C4H9 2.05 2.00 0.05 1.93 0.12 1.89 0.16 2.04 0.01 1.83 0.22
2-Phenylethyl 2.10 2.22 −0.12 2.22 −0.12 2.41 −0.31 2.20 −0.10 2.21 −0.11

(S)-3-HPP
H −1.19 −1.06 −0.13 −1.09 −0.10 −0.80 −0.39 −1.02 −0.17 −1.25 0.06
CH3 −0.28 −0.48 0.20 −0.42 0.14 −0.56 0.28 −0.44 0.16 −0.19 −0.09
C2H5 −0.01 0.13 −0.14 0.17 −0.18 0.19 −0.20 0.17 −0.18 0.19 −0.20
n-C3H7 0.81 0.77 0.04 0.77 0.04 0.57 0.24 0.85 −0.04 0.98 −0.17
i-C3H7 0.68 0.68 0.00 0.75 −0.07 0.62 0.06 0.62 0.06 0.53 0.15
n-C4H9 1.51 1.40 0.11 1.37 0.14 1.18 0.33 1.54 −0.03 1.27 0.24
2-Phenylethyl 1.80 1.62 0.18 1.67 0.13 2.03 −0.23 1.70 0.10 1.70 0.10
a Alkylic (R) group at nitrogen ring
b Observed values of the Log IC50 for the σ -receptor taken from the literature [19,25,67]
c Values calculated using non-stochastic quadratic indices [67]
d Residual, defined as [Log IC50(σ)Obs – Log IC50(σ)Cal]
e Values calculated using non-stochastic linear indices [66]
f Values calculated using stochastic linear indices [66]
g Values calculated using non-stochastic bilinear indices [68]
h Values calculated using stochastic bilinear indices [68]
Abbreviations: HPP, N -alkylated 3-Hydroxyphenyl piperidines

Table 7 Statistical parameters of the QSAR models obtained using different molecular descriptors to
predict the σ -receptor antagonist activity of 14 N-alkylated 3-hydroxyphenyl piperidines

Index N n R2 s q2 scv F

Stochastic bilinear indices [68] 14 2 0.961 0.219 0.946 0.235 134.02
Non-stochastic bilinear indices [68] 14 2 0.953 0.238 0.935 0.259 111.93
Stochastic linear indices [66] 14 2 0.941 0.267 0.90 0.319 87.93
Non-stochastic quadratic indices [67] 14 2 0.940 0.270 0.912 0.289 85.82
Non-stochastic linear indices [66] 14 2 0.939 0.271 0.909 0.305 84.87
Chiral TIs [25] 14 3 0.931 0.301 ∗ ∗ 45.70
MARCH-INSIDE molecular descriptors [19] 14 2 0.922 0.295 ∗ 0.32 71.17

* Values are not reported in the literature

reported cross-validation regression coefficient (q2) present high predictive power;
these values of q2 are between 0.90 and 0.946. The values of q2(q2 > 0.5) can be
considered as a proof of the high predictive ability of the models [90–92]. Unfortu-
nately, the authors of previous works, Diaz et al. [19] and Julian de Ortiz et al. [25]
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do not report the result of the cross-validation. Considering all these statistical criteria
we can conclude that, the obtained model with stochastic bilinear indices is the best
QSAR model to describe the property studied in this section.

4.3 Prediction of the corticosteroid-binding globulin (CBG) binding affinity
of a steroid family

Finally, in order to validate even more the 3D-chiral (2.5) TOMOCOMD-CARRD MDs
in QSAR studies, we select a molecular set that are well-know to QSAR researchers,
the so-called Cramer’s steroid database. This data set was introduced by Cramer et
al. [37] in 1988 using Comparative Molecular Field Analysis (CoMFA) methodology
and since then has become a benchmark for the assessment of novel QSAR methods
[93,94]. Various groups used this data set to compare the quality of their 3D-QSAR
methodologies. Hence, this data set has become one of the most often discussed ones
and can be seen as point of reference data set for novel MDs [95]. Even though this
data set is not the ideal 3D benchmark data set [95] it was used for the shake of compa-
rability [96]. We use this molecular set, because all compounds in this data set contain
chiral atoms, and binding affinities of these compounds are available [37]. Due to the
studied steroid molecular structures have been already depicted in several papers, they
will not be included here. For more details see, for example Fig. 1 in reference [37]
or Fig. 1 in reference [94].

Different methods were used to develop 3D-QSAR models for this data set, includ-
ing CoMFA [37], Comparative Molecular Similarity Indices Analysis (CoMSIA) [97],
Molecular Quantum Similarity Measures (MQSM) [98], Topological Quantum Simi-
larity Indices (TQSI) [99], and Comparative Molecular Moment Analysis (CoMMA)
[94], Mapping Property Distributions of Molecular Surfaces (MAP) [96], and so on
[100–103].

The molecular set used in our study is made up of 31 steroids for which the binding
affinity to the corticosteroid-binding globulin was measured. The names of the struc-
tures and the corresponding biological activities are listed in Table 8, the predicted
values for this data set using 3D-Chiral (2.5) atom-based TOMOCOMD-CARDD MDs
are also shown.

An important aspect of QSAR modeling is the development of a way to validate
the model. Good direct statistical criteria to fit the data set are not a guarantee that
the model can make accurate predictions for compounds outside the data set. The
leave-one-out (LOO) statistic has been used as a means of demonstrating predictive
capability. The values of cross-validation square correlation coefficients for this data
set fluctuate from 0.630 to 0.940, but most of them are concentrated between 0.705 and
0.799. These values of q2(q2 > 0.5) can be considered as a proof of the high predictive
ability of the models [89–91]. As we previously pointed out, one of the objectives of
the present report is to compare with other methods used for this data set. The results of
these works are summarized in Table 9, where the results were arranged in decreasing
value of q2 and the comparison can be more easily carried out. It is remarkably that, the
results achieved with 3D-chiral (2.5) TOMOCOMD-CARRD MDs show comparable
results to other highly predictive QSAR models; even when they use more sophisti-
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Table 9 Comparison between of prediction for the steroid data set 3D-chiral (2.5) TOMOCOMD-CARRD
MDs and other 3D QSAR approaches

QSAR method N n Statistical method q2 Ref.

Similarity matrices-based molecular descriptors 31 6 genetic NN 0.940 [102]
TQSAR 31 6 MLR after PCA 0.842 [98]
3D-chiral bilinear indices (stochastic) 31 7 MLR 0.833 [68]
3D-chiral bilinear indices (non-stochastic) 31 6 MLR 0.799 [68]
3D-chiral linear indices (stochastic) 31 7 MLR 0.788 [66]
3D-chiral quadratic indices (non-stochastic) 31 6 MLR 0.781 [69]
MEDV 31 5 GA and RLM 0.777 [104]
TQSI 31 3 MLR 0.775 [99]
3D-chiral linear indices (non-stochastic) 31 6 MLR 0.767 [66]
MEDV 31 6 GA and RLM 0.765 [104]
3D-chiral quadratic indices (stochastic) 31 7 MLR 0.735 [69]
Similarity indices 31 1 PLS 0.734 [101]
E-State and kappa shape index* 31 4 MLR* 0.730 [105]
MQSM 31 4 MLR after PLS 0.727 [106]
E-State and kappa shape index 31 4 MLR 0.720 [105]
MQMS 31 3 MLR and PCA 0.705 [99]
CoMMA 31 6 PCR 0.689 [107]
MEDV 31 4 GA and RLM 0.648 [104]
Wagener’s 31 – k-NN and FNN 0.630 [100]

N: number of steroids. n: number of variables. q2: leave-one-out cross-validated coefficient of determina-
tion
* one variable has a non-linear relationship

cated statistic methods such as: partial least squared, principal components analysis,
non-linear neural network techniques and so on. Many of the models objects of com-
parison were obtained from different procedures based on quantum mechanics and/or
geometric principles as well as molecular mechanic approaches.

5 Concluding remarks

In these studies we demonstrated that atom-based 3D-chiral (2.5) TOMOCOMD-CAR-
RD MDs can be successfully applied in QSAR studies which include chiral molecules.
Therefore, we suggest that 2D-QSAR methods improved by chirality descriptors could
be a powerful alternative to popular 3D-QSAR approaches.

As we have summarized in the present work, the generalized atom-based 3D-chiral
(2.5) TOMOCOMD-CARRD MDs are not only able to discriminate between active
and inactive perindoprilate stereoisomers, but also to codify information related to
pharmacological property highly dependent on molecular symmetry of a set of seven
pairs of chiral N -alkylated 3-(3-hydroxyphenyl)-piperidines that bind σ -receptors, as
well as to predict the corticosteroid-binding globulin binding affinity of the Cramer’s
steroid data set. In this sense, we show that for three data sets chiral-QSAR mod-
els obtained with 3D-chiral (2.5) TOMOCOMD-CARRD MDs had better or similar
predictive ability as compared to other previously reported chiral and/or 3D-QSAR.
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6 Future outlooks

At present, most of researches working in drug discovery with the use of TIs concen-
trate their efforts in the development of more powerful MDs. In this sense, our research
group is working in the definition of novel MDs based in group theory and geomet-
ric properties. We are also interested in apply our indices to codify planar and axial
chirality as well as conformation alpha beta and other chirality data sets for example
chromatographic retention. Also we have planed concentrate our efforts in the use of
more sophisticated statistical techniques to be used with the TOMOCOMD-CARRD
MDs.
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81. M. Randić, J. Math. Chem. 7, 155–168 (1991)
82. P.D. Walker, P.G. Mezey, J. Am. Chem. Soc. 115, 12423–12430 (1993)
83. L.B. Kier, L.H. Hall, Molecular Structure Description. The Electrotopological State (Academic Press,

New York, 1999)
84. E.L. Elliel, S. Wilen, L. Mander, Stereochemistry of Organic Compounds (John Wiley & Sons Inc,

New York, 1994)
85. Y. Marrero-Ponce, V. Romero, TOMOCOMD software. TOMOCOMD (TOpological MOlecular

COMputer Design) for Windows, version 1.0 is a preliminary experimental version; in future
a professional version will be obtained upon request to Y. Marrero: yovanimp@qf.uclv.edu.cu;
ymarrero77@yahoo.es, Central University of Las Villas. (2002)

86. B.L. Kier, L.H. Hall, Molecular Connectivity in Structure-Activity Analysis (Research Studies Press,
Letchworth, UK, 1986)

87. M. Vicent, B. Marchand, G. Rémond, S. Jaquelin-Guinamant, G. Damien, B. Portevin, J. Baumal, J.
Volland, J. Bouchet, P. Lambert, B. Serkiz, W. Luitjen, M. Lauibie, P. Schiavi, Drug Des. Discov. 9,
11 (1992)

88. STATISTICA version. 6.0 Statsoft, I
89. A. Golbraikh, A. Tropsha, J. Mol. Graph. Model. 20, 269–276 (2002)
90. S. Wold, L. Erikson, in Chemometric Methods in Molecular Design ed. by H. van de Waterbeemd

(VCH Publishers, Weinheim, 1995), pp. 309–318
91. D.A. Belsey, E. Kuh, R.E. Welsch, Regression Diagnostics (Wiley, New York, 1980)
92. M.T. Cronin, T.W. Schultz, J. Mol. Struct. (Theochem) 622, 39–51 (2003)
93. E.A. Coats, In 3D QSAR in Drug Design. (Kluwer/ESCOM:Dordrecht, 1998), pp. 119–213
94. B.D. Silverman, Quant. Struct.-Act. Relat. 19, 237–246 (2000)
95. E.A. Coats, Persp. Drug Disc. Des. 12–14, 199–213 (1998)
96. N. Stiefl, K. Baumann, J. Med. Chem. 46, 1390–1407 (2003)
97. G. Klebe, U. Abraham, T. Mietzner, J. Med. Chem. 37, 4130–4146 (1994)

123



786 J Math Chem (2008) 44:755–786

98. D. Robert, L. Amat, R. Carbo-Dorca, J. Chem. Inf. Comput. Sci. 39, 333–344 (1999)
99. M. Lobato, L. Amat, E. Besalu, R. Carbo-Dorca, Quant. Struct.-Act. Relat. 16, 465–472 (1997)
100. M. Wagener, J. Sadowski, J. Gasteiger, J. Am. Chem. Soc. 117, 7769–7775 (1995)
101. M.F. Parretti, R.T. Kroemer, J.H. Rothman, W.G. Richards, J. Comput. Chem. 18, 1334–1353 (1997)
102. S.S. So, M. Karplus, J. Med. Chem. 40, 4347–4359 (1997)
103. H. Chen, J. Zhou, G. Xie, J. Chem. Inf. Comp. Sci. 38, 243–250 (1998)
104. S.S. Liu, C.S. Yin, L.S. Wang, J. Chem. Inf. Comput. Sci. 42, 749–756 (2002)
105. H.H. Maw, L.H. Hall, J. Chem. Inf. Comput. Sci. 41, 1248–1254 (2001)
106. E. Besalu, X. Girones, L. Amat, R. Carbo-Dorca, Acc. Chem. Res. 35, 289–295 (2002)
107. B.D. Silverman, D.E. Platt, J. Med. Chem. 39, 2129–2140 (1996)

123


	3D-chiral (2.5) atom-based TOMOCOMD-CARDD descriptors: theory and QSAR applications to central chirality codification
	Abstract
	1 Background
	2 Theoretical scaffold about 3D-Chiral (2.5) atom-basedTOMOCOMD-CARDD descriptors
	2.1 Chemical information and atom-based molecular vector
	2.2 Background in non-stochastic and stochastic graph---theoreticelectronic-density matrices
	2.3 Calculation of atom-based 2D TOMOCOMD-CARDD MDs
	2.4 3D-chiral extended (2.5) non-stochastic and stochastic atom-based TOMOCOMD-CARDD MDs for atoms, atom-types and group as wellas for whole molecule

	3 Computational strategies
	4 Qsar applications to central chirality codification: Comparisonwith other theoretical approaches
	4.1 Classification of the ACE inhibitory activity of 32 perindopirilate's -stereoisomers
	4.2 Modelling -receptor antagonist activities of 3-(3-hydroxyphenyl)piperidines
	4.3 Prediction of the corticosteroid-binding globulin (CBG) binding affinityof a steroid family

	5 Concluding remarks
	6 Future outlooks
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


